Preimplantation Genetic Testing

ABSTRACT: Preimplantation genetic testing comprises a group of genetic assays used to evaluate embryos before transfer to the uterus. Preimplantation genetic testing-monogenic is targeted to single gene disorders, and preimplantation genetic testing-aneuploidy is a broader test that screens for aneuploidy in all chromosomes, including the 22 pairs of autosomes and the sex chromosomes X and Y. To test embryos that are at risk for chromosome gains and losses related to parental structural chromosomal abnormalities (e.g., translocations, inversions, deletions, and insertions), preimplantation genetic testing-structural rearrangements is used. Independent of the preimplantation genetic testing modality employed, false-positive and false-negative results are possible. Patients and health care providers should be aware that a “normal” or negative preimplantation genetic test result is not a guarantee of a newborn without genetic abnormalities. Traditional diagnostic testing or screening for aneuploidy should be offered to all patients who have had preimplantation genetic testing-aneuploidy, in accordance with recommendations for all pregnant patients. It is especially important to offer diagnostic testing or screening for aneuploidy after preimplantation genetic testing-monogenic or preimplantation genetic testing-structural rearrangements if concurrent preimplantation genetic testing-aneuploidy is not performed. Many limitations exist to preimplantation genetic testing and include challenges in detecting microdeletions and microduplications, de novo variants, and imprinting disorders. An emerging problem has been detection of mosaicism during preimplantation genetic testing-aneuploidy. The clinical utility of preimplantation genetic testing-monogenic and preimplantation genetic testing-structural rearrangements is firmly established; however, the best use of preimplantation genetic testing-aneuploidy remains to be determined. Future research is necessary to establish the overall clinical utility for preimplantation genetic testing-aneuploidy, the subset of patients that may benefit from preimplantation genetic testing-aneuploidy, the clinical significance of mosaicism, and residual risk for aneuploidy in preimplantation genetic testing-aneuploidy screened embryos.

Recommendations

- Preimplantation genetic testing comprises a group of genetic assays used to evaluate embryos before transfer to the uterus. Preimplantation genetic testing-monogenic (known as PGT-M) is targeted to single gene disorders. Preimplantation genetic testing-monogenic uses only a few cells from the early embryo, usually at the blastocyst stage, and misdiagnosis is possible but rare with modern techniques. Confirmation of preimplantation genetic testing-monogenic results with chorionic villus sampling (CVS) or amniocentesis should be offered.
- To detect structural chromosomal abnormalities such as translocations, preimplantation genetic testing-structural rearrangements (known as PGT-SR) is used. Confirmation of preimplantation genetic testing-structural rearrangements results with CVS or amniocentesis should be offered.
- The main purpose of preimplantation genetic testing-aneuploidy (known as PGT-A) is to screen embryos for whole chromosome abnormalities. Traditional diagnostic testing or screening for aneuploidy should
be offered to all patients who have had pre-
implantation genetic testing-aneuploidy, in accor-
dance with recommendations for all pregnant
patients.

Introduction
As preimplantation genetic technologies are increas-
ingly used with in vitro fertilization, obstetric care
providers should become familiar with these tests as
well as their benefits and limitations. Preimplantation
genetic testing comprises a group of genetic assays used
to evaluate embryos before transfer to the uterus.
Preimplantation genetic testing-monogenic is targeted
to single gene disorders, and preimplantation genetic
testing-aneuploidy is a broader test that screens for
aneuploidy in all chromosomes, including the 22 pairs
of autosomes and the sex chromosomes, X and Y. To
detect structural chromosomal abnormalities such
as translocations, preimplantation genetic testing-
structural rearrangements is used

Preimplantation genetic testing has been per-
formed on polar bodies, a single blastomere from
a cleavage-stage embryo, and a group of cells from the
trophectoderm at the blastocyst stage. The latter has
become the most common methodology used. In this
methodology, preimplantation genetic testing is per-
formed on approximately 5–10 cells derived from the
trophectoderm layer that gives rise to the placenta and
do not require a biopsy of the inner cell mass, which
ultimately gives rise to the fetus. Because of possible
mosaicism, preimplantation genetic testing results
from the trophectoderm may not reflect the genetic
constitution of the inner cell mass (1). Independent
of the preimplantation genetic testing modality em-
ploved, false-positive and false-negative results are
possible.

Preimplantation genetic testing raises several ethical
issues that are beyond the scope of this document. For
eexample, there are complexities to offering preimplanta-
tion genetic testing to screen for adult-onset disorders or
to determine transplantation compatibility for ill family
members (2). Such issues are addressed extensively in the
bioethics literature as well as documents from ACOG (3)
and the American Society of Reproductive Medicine
(ASRM) (4).

Preimplantation Genetic Testing for
Monogenic Disorders
Preimplantation genetic testing-monogenic is used to
test for a specific genetic pathogenic variant (mutation)
associated with a known diagnosis or known predispos-
tion within a family. Preimplantation genetic testing-
monogenic does not test for all single gene disorders at
time and will not detect de novo pathogenic variants.

This technique examines embryos using either cytoge-
netic or molecular techniques for (1) single-gene dis-
orders (eg, Huntington disease, cystic fibrosis, fragile X
syndrome), including those that are autosomal dominant
and recessive or X-linked, or (2) hereditary cancer
syndromes (eg, hereditary breast and ovarian cancer,
Lynch syndrome). Additionally, preimplantation genetic
testing-monogenic can be used to identify human
leukocyte antigen-compatible, unaffected embryos ges-
tated with the goal of allowing ill family members to
receive compatible bone marrow transplants or cord
blood transfusions. Preimplantation genetic testing-
monogenic uses only a few cells from the early embryo,
usually at the blastocyst stage, and misdiagnosis is
possible but rare with modern techniques. Laboratories
often quote a small risk for misdiagnosis; however, no
cases of misdiagnosis were reported in the data from the
European Society of Human Reproduction and Embry-
ology Consortium (5). Regardless, confirmation of pre-
implantation genetic testing-monogenic results with CVS
or amniocentesis should be offered.

Preimplantation Genetic Testing for
Structural Rearrangements
To test embryos that are at risk for chromosome gains
and losses related to parental structural chromosomal
abnormalities (eg translocations, inversions, deletions,
and insertions), preimplantation genetic testing-
structural rearrangements is used. Genetic counseling
and discussion of possible preimplantation genetic
testing should be offered when a structural rearrange-
ment is discovered in a parent. At this time, preimplan-
tation genetic testing-structural rearrangements cannot
differentiate between an embryo that has a normal
karyotype and an embryo that carries a balanced form
of the familial chromosome rearrangement. Individuals
who carry a balanced chromosome rearrangement
involving imprinted genes (eg, 13;14 robertsonian trans-
location) are at risk for abnormalities related to unipa-
rental disomy, which cannot be excluded by all methods
of preimplantation genetic testing analysis. Because of
these limitations, and the fact that this testing method
uses only a few trophectoderm cells, confirmation of
preimplantation genetic testing-structural rearrange-
ments results with CVS or amniocentesis should be
offered.

Preimplantation Genetic Testing for
Aneuploidy
The main purpose of PGT-A is to screen embryos for
whole chromosome abnormalities. Before its use, the
selection of embryos for transfer was based mainly on
morphologic criteria, but many women failed to achieve
pregnancy despite transfer of morphologically optimal
embryos. Preimplantation genetic testing-aneuploidy
was proposed as a way to detect whole chromosome
aneuploidy before transfer and thus potentially increase
live birth rates and decrease early pregnancy failure rates
(6, 7). The original technique used fluorescence in situ
hybridization but was limited to just a few chromosomes.

Committee Opinion Preimplantation Genetic Testing

OBSTETRICS & GYNECOLOGY
Preimplantation genetic testing-aneuploidy has now expanded to include assessment of all the chromosomes, through various techniques such as array comparative genomic hybridization and next generation sequencing (8).

The initial interest in preimplantation genetic testing-aneuploidy through fluorescence in situ hybridization was tempered by the publication of randomized studies that did not find improved in vitro fertilization (IVF) outcomes (9,10). Proposed explanations included the fact that biopsy of the early cleavage stage embryo (day 3) appears to negatively affect implantation potential (11) and single-cell biopsy precludes confirmatory testing. At the time, several major medical societies subsequently released opinions discouraging routine use of preimplantation genetic testing-aneuploidy (12,13).

In an effort to continue the quest toward higher live birth rates and lower multiple gestation rates in IVF, ongoing research pursued emerging techniques. These involved biopsy of the multiple cell trophectoderm (future placenta) of the blastocyst. In addition, several platforms capable of testing all chromosomes have been developed. These platforms differ in their ability to identify other anomalies simultaneously, such as structural abnormalities, single gene mutations, mitochondrial copy number, and mosaicism (8).

A systematic review examined the clinical effectiveness of preimplantation genetic testing-aneuploidy and found three randomized controlled trials that reported higher pregnancy rates in younger patients with no previous failed IVF attempts; however, these were small studies with substantial limitations (14). Another randomized controlled trial found that women aged 38–41 had significantly higher live birth rates and lower miscarriage rates after preimplantation genetic testing-aneuploidy, as well as a shorter time to pregnancy. However, the comparison is problematic because in the preimplantation genetic testing-aneuploidy group, 32% of patients did not have an embryo to transfer (15). After a comprehensive review, ASRM published a practice guideline in March of 2018 concluding that “there is insufficient evidence to recommend the routine use of preimplantation genetic testing-aneuploidy in all infertile women.” In addition, the ideal genetic testing platform to analyze all chromosomes has not yet been established (16). Worldwide randomized controlled trials are needed to determine which patient cohorts, if any, may benefit from preimplantation genetic testing-aneuploidy.

Traditional diagnostic testing or screening for aneuploidy should be offered to all patients who have had preimplantation genetic testing-aneuploidy, in accordance with recommendations for all pregnant patients.

Prenatal Genetic Screening and Testing After Preimplantation Genetic Testing

Because preimplantation genetic testing cannot identify all genetic abnormalities in a fetus, counseling about prenatal genetic screening or testing should be a process of shared decision making with a focus on the patient’s individual risk, reproductive goals, and preferences. For example, current preimplantation genetic testing cannot detect all microdeletions or microduplications, nor will it detect de novo pathogenic variants. Patients and health care providers should be aware that a negative preimplantation genetic test result is not a guarantee of a newborn without genetic abnormalities. False-positive and false-negative results can occur with preimplantation genetic testing, therefore, prenatal diagnostic testing (through CVS or amniocentesis) should be offered to all patients who have achieved pregnancy after preimplantation genetic testing. However, there are patients who, because of the associated risk of miscarriage, decline diagnostic testing and choose prenatal screening (first-trimester and second-trimester serologic testing, nuchal translucency screening, or cell-free DNA testing), as do many patients who have not elected preimplantation genetic testing-aneuploidy. Patients who choose screening after preimplantation genetic testing-aneuploidy should be made aware of the substantial limitations of this strategy and the potential for a false-positive test result. It is especially important to offer diagnostic testing or screening for aneuploidy after preimplantation genetic testing-monogenic or preimplantation genetic testing-structural rearrangements if concurrent preimplantation genetic testing-aneuploidy is not performed. As preimplantation genetic testing is used more over time, data will be available to help determine the optimal prenatal testing and screening strategies for this patient population. For a full discussion of screening and diagnostic testing for aneuploidy in pregnancy, see ACOG Practice Bulletin Number 162, Prenatal Diagnostic Testing for Genetic Disorders, and ACOG Practice Bulletin Number 163, Screening for Fetal Aneuploidy.

Preimplantation Genetic Testing and Mosaicism, an Emerging Conundrum

Many limitations exist to preimplantation genetic testing and include challenges in detecting microdeletions and microduplications, de novo variants, and imprinting disorders. An emerging problem has been detection of mosaicism during preimplantation genetic testing-aneuploidy. Mosaicism is defined as two or more cell populations with different chromosomal complements present within the same embryo (16). Traditionally, embryos with mosaicism detected on preimplantation genetic testing-aneuploidy have not been used for transfer in IVF because it is assumed they will not develop into euploid fetuses at term. It is important to understand that preimplantation genetic testing-aneuploidy testing was not originally intended to confirm a diagnosis of mosaicism. Recent application of advanced genetic technologies, such as next generation sequencing, has allowed mosaicism to be detected with greater sensitivity,
with an incidence as high as 20% of tested embryos (17). Numerous reasons for the apparent mosaicism exist, and some are more likely to result in a healthy live-born infant than others. (18). Several studies have shown term delivery of euploid fetuses after mosaic embryo transfer, albeit with lower pregnancy rates. Proposed etiologies for this success include self-correction of the mosaicism or inaccuracy of the initial embryo biopsy (19, 20). Given this data, some patients may choose to implant select embryos with mosaicism detected on preimplantation genetic testing-aneuploidy, after detailed consent and counseling. Referral to a specialist with genetic training and expertise should be considered, and prenatal diagnosis with CVS or amniocentesis should be strongly encouraged.

Future Directions

The clinical utility of preimplantation genetic testing-monozygotic and preimplantation genetic testing-structural rearrangements is firmly established; however, the best use of preimplantation genetic testing-aneuploidy remains to be determined. At this time, in concordance with ASRM recommendations, there is insufficient evidence to recommend the routine use of preimplantation genetic testing-aneuploidy in all infertile women.

The cost effectiveness of preimplantation genetic testing-aneuploidy is difficult to quantify because of the intangible costs of failed implantation and spontaneous loss, as well as variability in treatment costs. In addition, preimplantation genetic testing-aneuploidy may prove to be a factor in decreasing the multiple gestation associated with IVF because of the current recommendation of single euploid embryo transfer regardless of age (21, 22). Future research is necessary to establish the overall clinical utility for preimplantation genetic testing-aneuploidy, the subset of patients that may benefit from preimplantation genetic testing-aneuploidy, the clinical significance of mosaicism, and the residual risk for aneuploidy in preimplantation genetic testing-aneuploidy screened embryos.

References

Published online on February 20, 2020.

Copyright 2020 by the American College of Obstetricians and Gynecologists. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, posted on the internet, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher.

American College of Obstetricians and Gynecologists
409 12th Street SW, Washington, DC 20024-2188

This information is designed as an educational resource to aid clinicians in providing obstetric and gynecologic care and use of this information is voluntary. This information should not be considered as inclusive of all proper treatments or methods of care or as a statement of the standard of care. It is not intended to substitute for the independent professional judgment of the treating clinician. Variations in practice may be warranted when, in the reasonable judgment of the treating clinician, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology. The American College of Obstetricians and Gynecologists reviews its publications regularly; however, its publications may not reflect the most recent evidence. Any updates to this document can be found on acog.org or by calling the ACOG Resource Center.

While ACOG makes every effort to present accurate and reliable information, this publication is provided “as is” without any warranty of accuracy, reliability, or otherwise, either express or implied. ACOG does not guarantee, warrant, or endorse the products or services of any firm, organization, or person. Neither ACOG nor its officers, directors, members, employees, or agents will be liable for any loss, damage, or claim with respect to any liabilities, including direct, special, indirect, or consequential damages, incurred in connection with this publication or reliance on the information presented.

All ACOG committee members and authors have submitted a conflict of interest disclosure statement related to this published product. Any potential conflicts have been considered and managed in accordance with ACOG’s Conflict of Interest Disclosure Policy. The ACOG policies can be found on acog.org. For products jointly developed with other organizations, conflict of interest disclosures by representatives of the other organizations are addressed by those organizations. The American College of Obstetricians and Gynecologists has neither solicited nor accepted any commercial involvement in the development of the content of this published product.