Sulfonamides, Nitrofurantoin, and Risk of Birth Defects

ABSTRACT: The evidence regarding an association between the nitrofuran and sulfonamide classes of antibiotics and birth defects is mixed. As with all patients, antibiotics should be prescribed for pregnant women only for appropriate indications and for the shortest effective duration. During the second and third trimesters, sulfonamides and nitrofurantoins may continue to be used as first-line agents for the treatment and prevention of urinary tract infections and other infections caused by susceptible organisms. Prescribing sulfonamides or nitrofurantoin in the first trimester is still considered appropriate when no other suitable alternative antibiotics are available. Pregnant women should not be denied appropriate treatment for infections because untreated infections can commonly lead to serious maternal and fetal complications.

Because antibiotics are commonly prescribed in pregnancy, there is a considerable body of pharmacoepidemiologic data addressing the relationship of antibiotic exposure and birth defects. The debate surrounding this relationship was heightened in 2009, with a publication by Crider and colleagues (1). The goal of this Committee Opinion is to assess the current evidence regarding the use of certain specific antibiotics in pregnancy and their association with birth defects (1).

In 2009, Crider and colleagues published a population-based case-control study of the relationship between antibiotics and birth defects that used data from the National Birth Defects Prevention Study. In this study, two classes of antibiotics commonly used to treat urinary tract infections—1) nitrofuran derivatives and 2) sulfonamides—were found to be significantly associated with multiple birth defect categories. Although this was a large study, it had several significant limitations. First, it was subject to recall bias because women were asked about antibiotic use after pregnancy. Second, the prescription of antibiotics was not confirmed by the medical record; approximately 35% of patients could not recall the specific product name. Third, because this was an observational study, it was not possible to determine whether the birth defect was due to the antibiotic itself, the infection for which the antibiotic was prescribed, or some other confounding factor. Additional studies examining the relationship between prenatal exposure to these antibiotics and birth defects have reported potential fetal risks, whereas other studies have not found such risks among other populations or when using different epidemiologic methods (2–8). For example in 2013, a population-based cohort study was published that examined first-trimester nitrofurantoin exposure through linked filled-prescription and birth databases (9). The authors found no association between first-trimester dispensing of nitrofurantoin and risk of major malformations.

It is reassuring that commonly used antibiotics, namely, penicillins, erythromycin, cephalosporins, and a less commonly used group, the quinolones, were not associated with an increased risk of birth defects in the 2009 study (1). These findings are in agreement with many other studies also reporting no increased risk of birth defects associated with prenatal exposure to penicillin (10), ampicillin (11), augmentin (6), pivampicillin (12), cephalosporins (13–14), gentamicin (15), oxacillin (16), erythromycin (17), metronidazole (18), and quinolones (19–20).

Conclusion and Recommendations

Commonly used antibiotics, such as penicillins, erythromycin, and cephalosporins, have not been found to be associated with an increased risk of birth defects. However, the evidence regarding an association between
the nitrofuran and sulfonamide classes of antibiotics and birth defects is mixed. As with all patients, antibiot-
cics should be prescribed for pregnant women only for
appropriate indications and for the shortest effective
duration. In pregnancy, many urine cultures show bacte-
rial contaminants that do not represent true infection.
Thus, cultures showing mixed gram-positive bacteria, lactobacilli, and Staphylococcus species (other than S
saprophyticus), may be presumed to be contaminants and
not treated. When selecting an antibiotic for a true infec-
tion during the first trimester of pregnancy (that is, dur-
ing organogenesis), obstetrician–gynecologists and other
health care providers should consider and discuss with
patients the benefits as well as the potential unknown
risks of teratogenesis and fetal and maternal adverse
reactions. Prescribing sulfonamides or nitrofurantoin in
the first trimester is still considered appropriate when no
other suitable alternative antibiotics are available. During
the second and third trimesters, sulfonamides and nitro-
furantoin may continue to be used as first-line agents
for the treatment and prevention of urinary tract infec-
tions and other infections caused by susceptible organ-
isms (8). Obstetrician–gynecologists and other health
care providers also should be aware that sulfonamides
and nitrofurantoin are contraindicated in patients with
glucose-6-phosphate dehydrogenase deficiency, or in
pregnant women identified to be at risk of this condi-
tion. Pregnant women should not be denied appropriate
treatment for infections because untreated infections can
commonly lead to serious maternal and fetal complica-
tions.

References

1. Crider KS, Cleves MA, Reefhuis J, Berry RJ, Hobbs CA,
Hu DJ. Antibacterial medication use during pregnancy
and risk of birth defects: National Birth Defects Prevention

Folic acid antagonists during pregnancy and the risk of

3. Czeizel AE, Rockenbauer M, Sorensen HT, Olsen J. The ter-
atogenic risk of trimethoprim-sulfonamides: a population

4. Czeizel AE, Puho E, Sorensen HT, Olsen J. Possible associa-
tion between different congenital abnormalities and use of
different sulfonamides during pregnancy. Congenit Anom
(Kyoto) 2004;44:79–86.

5. Norgard B, Czeizel AE, Rockenbauer M, Olsen J, Sorensen HT.
Population-based case-control study of the safety of sul-
fasalazine use during pregnancy. Aliment Pharmacol Ther

6. Czeizel AE, Rockenbauer M, Sorensen HT, Olsen J. Augmentin
treatment during pregnancy and the prevalence of congenital abnormalities: a population-based
case–control teratologic study. Eur J Obstet Gynecol

7. Czeizel A. A case-control analysis of the teratogenic effects

8. Forna F, McConnell M, Kitabire FN, Homsy J, Brooks JT,
Mermin J, et al. Systematic review of the safety of trim-
ethoprim-sulfamethoxazole for prophylaxis in HIV-infected
pregnant women: implications for resource-limited set-

outcomes after gestational exposure to nitrofurantoin.

10. Dencker BB, Larsen H, Jensen ES, Schonheyder HC,
Nielsen GL, Sorensen HT. Birth outcome of 1886 pregnan-
cies after exposure to phenoxymethylpenicillin in utero.

11. Czeizel AE, Rockenbauer M, Sorensen HT, Olsen J. A pop-
ulation-based case-control teratologic study of ampi-
cillin treatment during pregnancy. Am J Obstet Gynecol
2001;185:140–7.

12. Larsen H, Nielsen GL, Sorensen HT, Moller M, Olsen J,
Schonheyder HC. A follow-up study of birth outcome
in users of pivampicillin during pregnancy. Acta Obstet

13. Berkovitch M, Merlob P. Use of cephalosporins during
pregnancy and in the presence of congenital abnormalities
817.

14. Czeizel AE, Sorensen HT, Rockenbauer M, Olsen J. A pop-
ulation-based case-control teratologic study of nalidixic


31:311–2.

17. Czeizel AE, Rockenbauer M, Sorensen HT, Olsen J. A pop-
ulation-based case-control teratologic study of oral
erthyromycin treatment during pregnancy. Reprod Toxicol

18. Sorensen HT, Larsen H, Jensen ES, Thulstrup AM,
Schonheyder HC, Nielsen GL, et al. Safety of metronida-
zo during pregnancy: a cohort study of risk of congenital
abnormalities, preterm delivery and low birth weight in 124

Robert E, et al. Pregnancy outcome after prenatal quino-
lone exposure. Evaluation of a case registry of the European
Network of Teratology Information Services (ENTIS). Eur

20. Larsen H, Nielsen GL, Schonheyder HC, Olesen C,
Sorensen HT. Birth outcome following maternal use of
fluoroquinolones. Int J Antimicrob Agents 2001;18:
259–62.