Adnexal Torsion in Adolescents

ABSTRACT: Adnexal torsion is the fifth most common gynecologic emergency. The most common ovarian pathologies found in adolescents with adnexal torsion are benign functional ovarian cysts and benign teratomas. Torsion of malignant ovarian masses in this population is rare. In contrast to adnexal torsion in adults, adnexal torsion in pediatric and adolescent females involves an ovary without an associated mass or cyst in as many as 46% of cases. The most common clinical symptom of torsion is sudden-onset abdominal pain that is intermittent, nonradiating, and associated with nausea and vomiting. If ovarian torsion is suspected, timely intervention with diagnostic laparoscopy is indicated to preserve ovarian function and future fertility. When evaluating adolescents with suspected adnexal torsion, an obstetrician–gynecologist or other health care provider should bear in mind that there are no clinical or imaging criteria sufficient to confirm the preoperative diagnosis of adnexal torsion, and Doppler flow alone should not guide clinical decision making. In 50% of cases, adnexal torsion is not found at laparoscopy; however, in most instances, alternative gynecologic pathology is identified and treated. Adnexal torsion is a surgical diagnosis. A minimally invasive surgical approach is recommended with detorsion and preservation of the adnexal structures regardless of the appearance of the ovary. A surgeon should not remove a torsed ovary unless oophorectomy is unavoidable, such as when a severely necrotic ovary falls apart. Although surgical steps may be similar to those taken when treating adult patients, there are technical adaptations and specific challenges when performing gynecologic surgery in adolescents. A conscientious appreciation of the physiologic, anatomic, and surgical characteristics unique to this population is required.

Recommendations and Conclusions

The American College of Obstetricians and Gynecologists makes the following recommendations and conclusions:
- Obstetrician–gynecologists who treat mainly adults are commonly consulted to manage adnexal torsion in an adolescent. Although surgical steps may be similar to those taken when treating adult patients, there are technical adaptations and specific challenges when performing gynecologic surgery in adolescents.
- The most common clinical symptom of torsion is sudden-onset abdominal pain that is intermittent, nonradiating, and associated with nausea and vomiting.
- There are no clinical or imaging criteria sufficient to confirm the preoperative diagnosis of adnexal torsion.
- Doppler flow alone should not guide clinical decision making.
- Although more than one half of cases of pediatric and adolescent adnexal torsion occur in the setting of an adnexal mass, cancer in this age group rarely presents as adnexal torsion.
- If ovarian torsion is suspected, timely intervention with diagnostic laparoscopy is indicated to preserve ovarian function and future fertility.
- A minimally invasive surgical approach is recommended with detorsion and preservation of the adnexal structures regardless of the appearance of the ovary.
- A surgeon should not remove a torsed ovary unless oophorectomy is unavoidable, such as when a severely necrotic ovary falls apart.
A cystectomy does not need to be performed at the
time of detorsion because it may cause additional
trauma. If a cystectomy is not performed, a surgeon
may consider incision and drainage for large cysts.
Ultrasonography to reevaluate the cyst at 6–12
weeks is recommended.

Adolescents are a unique population with specific
needs; thus, special care for placement of ports and
lower insufflation pressure may be indicated. Multi-
specialty collaboration is crucial to optimize care
and ensure that minimally invasive detorsion with
ovarian preservation is the standard treatment pro-
vided to adolescents with adnexal torsion.

Background
Adnexal torsion, including torsion of a normal or
pathologic ovary, torsion of the fallopian tube, para-
tubal cyst, or a combination of these conditions, is the
fifth most common gynecologic emergency. Thirty
percent of all cases of adnexal torsion occur in females
younger than 20 years (1). Approximately 5 of 100,000
females aged 1–20 years are affected, (2, 3) with girls
older than 10 years at increased risk because of hor-
monal influences and gonadal growth that result in an
increased frequency of physiologic and pathologic
masses (4–6). The risk of torsion increases when pelvic
masses exceed 5 cm (7). The most common ovarian
pathologies found in adolescents with adnexal torsion
are benign functional ovarian cysts and benign terato-
mas (8). Torsion of malignant ovarian masses in this
population is rare (9, 6).

Sixty-four percent of torsions occur on the right
side (10). The lower rate of torsion on the left side is
attributed to the protective nature of the descending
colon. In contrast to adnexal torsion in adults, adnexal
torsion in pediatric and adolescent females involves an
ovary without an associated mass or cyst in as many as
46% of cases (11). Congenitally long ovarian ligaments,
excessive laxity of the pelvic ligaments, or a relatively
small uterus that allows more space for the adnexa to
twist on its axis may be predisposing factors (8, 6). Rare
cases of isolated tubal torsion and bilateral adnexal tor-
sion are reported in the pediatric literature, and they are
almost always associated with tubal pathology, such as
hydrosalpinx or paratubal cyst (12). If ovarian torsion is
suspected, timely intervention with diagnostic laparos-
copy is indicated to preserve ovarian function and future
fertility.

Evaluation of Adolescents With
Adnexal Torsion
When evaluating adolescents with suspected adnexal
torsion, an obstetrician–gynecologist or other health
care provider should bear in mind that there are no
clinical or imaging criteria sufficient to confirm the
preoperative diagnosis of adnexal torsion. Patients
with a clinical suspicion for adnexal torsion should
undergo emergent diagnostic laparoscopy (13) (Fig. 1).
The differential diagnosis of an adolescent presenting
with abdominal pain is broad (11) and the pre-
sentation of adnexal torsion is nonspecific. The most
common clinical symptom of torsion is sudden-onset
abdominal pain that is intermittent, nonradiating, and
associated with nausea and vomiting. Nausea and
vomiting are reported in 62% and 67% of cases, re-
spectively (14). Data suggest that nausea and vomiting
more commonly occur in premenarchal patients (2), and
these symptoms are more commonly reported in pediatric
and adolescent patients with torsion than in those with an
ovarian cyst alone (15). Clinical signs of adnexal torsion
include abdominal tenderness, which is reported in up to
88% of patients with adnexal torsion. Rebound and peri-
toneal signs are reported in only 12–27% of patients (14,
16). Clinical signs also may include a palpable adnexal
mass (17). However, a bimanual examination generally
is not necessary or tolerated in pediatric and adolescent
patients (6).

None of the following tests are useful in the diagnosis
of adnexal torsion: leukocytosis, pyuria, C-reactive pro-
tein, and erythrocyte sedimentation rate. In small studies,
interleukin-6 and D-dimer show promise as biochemical
markers of torsion (8); however, they have not been stud-
ied in adolescents.

Transabdominal ultrasonography is the imaging
modality of choice. It has a sensitivity of 92% and
specificity of 96% in detecting adnexal torsion (18).
When torsed, all ovaries are enlarged. A completely
normal-appearing ovary on ultrasonography is
unlikely to be twisted. In a study of 41 pediatric and
adolescent patients with torsion, torsed ovaries on
ultrasonography were on average 12 times the volume
of the normal contralateral side (19). Ultrasonography
findings suggestive of ovarian torsion include unilat-
eral ovarian enlargement, ovarian edema characterized
by the presence of a hyperechogenic ovary with
peripherally displaced follicles and echogenic stroma,
free fluid, and a coiled vascular pedicle (referred to as
the “whirlpool sign”) (17) (Fig. 2). The whirlpool sign
is highly specific but technically difficult to visualize
on transabdominal ultrasonography. The use of Doppl-
er studies in detecting adnexal torsion is limited
because of their low sensitivity and operator depen-
dency. The presence of Doppler arterial flow does not
rule out torsion; for instance, one study reported
normal Doppler arterial flow in as many as 60% of
surgically confirmed cases of adnexal torsion (11).
Preservation of Doppler arterial flow can be explained
by intermittent torsion, collateral blood supply from
the utero-ovarian vessels or infundibulopelvic vessels,
or a torsed paratubal cyst. Doppler flow alone should
not guide clinical decision making.

Computed tomography or magnetic resonance
imaging often is performed while evaluating a patient
for causes of abdominal pain. If computed tomography

VOL. 134, NO. 2, AUGUST 2019
Committee Opinion Adnexal Torsion e57
imaging is obtained, findings that may indicate adnexal torsion include asymmetric ovarian enlargement, uterine deviation toward the pathologic side, pelvic free fluid, and fat stranding adjacent to the ovary (20). When computed tomography imaging suggests torsion, surgery should not be delayed to wait for ultrasonography (21).

Figure 1. Diagnosis and management of adnexal torsion in the adolescent.

Figure 2. Ultrasound whirlpool sign in ovarian torsion (A and B). Color flow on Doppler ultrasonographic image demonstrates the twisted pedicle (arrows) in a 12-year-old girl with a large, mature cystic teratoma (T) arising from the left adnexa, representing the lead point for left adnexal torsion. Reprinted from Ngo AV, Otjen JP, Parisi MT, Ferguson MR, Otto RK, Stanescu AL. Pediatric ovarian torsion: a pictorial review. Pediatr Radiol 2015;45:1845–55; quiz 1842–4.
Similarly, magnetic resonance imaging may show decreased ovarian enhancement post contrast, asymmetric enlargement of the ovary, uterine deviation toward the pathologic side, and presence of multiple small peripherally located follicles, typically best seen on T2-weighted images (22).

Adnexal torsion is a surgical diagnosis (7). To reduce the number of negative laparoscopies performed, composite indices have been developed to better identify torsion before surgery (23, 24). These indices combine clinical and radiologic predictors of adnexal torsion (eg, vomiting, adnexal volume, and the adnexal volume ratio [volume of affected ovary/volume of unaffected ovary]) into a composite score that more accurately predicts torsion (24). Further studies are needed to validate these scores; however, these studies highlight the positive correlation of vomiting and adnexal volume ratio with adnexal torsion. In 50% of cases, adnexal torsion is not found at laparoscopy; however, in most instances, alternative gynecologic pathology is identified and treated (25, 26). Given the importance of ovarian preservation, especially for pediatric and adolescent patients, a negative finding at laparoscopy is an acceptable clinical outcome.

Management of Adnexal Torsion

Although the viability of an ovary declines as time elapses from the onset of pain to surgical detorsion, the ovary’s dual blood supply makes it resilient to vascular injury, and the exact duration of vascular interruption needed to cause irreversible damage to the ovary is unknown (10, 27–29). Although two retrospective studies suggest that a sharp decrease in ovarian function occurs 72 hours after the onset of symptoms, the ovary is resilient, and function may persist much longer (30, 10).

An unfounded myth contributing to unnecessary oophorectomy is that a black or blue ovary suggests necrosis and thus should be removed. The appearance of the ovary at surgery is not a reliable indicator of ovarian viability. Multiple studies report future ovarian function despite a grossly ischemic appearance at the time of surgery (8, 25, 28, 31–36). After detorsion, improvements in the color of the ovary may not be seen intraoperatively; however, at second-look laparoscopy, near-normal appearing ovaries are seen 36 hours after untwisting a blue-black ovary (See Fig. 3 and Fig. 4). A second unfounded myth leading to unnecessary oophorectomies is that embolic phenomena will occur after untwisting. There is no evidence to support this practice and no cases of venous thromboembolism after detorsion have been reported in the literature (3, 37). The goals of surgery are to detorse the adnexa and preserve the ovary regardless of its appearance and the timing of presentation.

Operative Considerations

Preoperative Counseling

As with all medical procedures, obstetrician–gynecologists should engage patients (and their medical decision makers for unemancipated patients younger than 18 years) in the informed consent process in accordance with current state laws (38). Required consent includes the patient’s parent(s) or legal guardian(s) and may include a court-appointed medical decision maker. There may be special provisions for patients with intellectual or developmental delays even if they are older than 18 years. Patients should be present when appropriate, although their involvement in preoperative discussions will be affected by age and understanding. In addition to standard procedural risks, surgeons should address other considerations such as the following: the

![Figure 3. Ovarian torsion. Reprinted from Harkins G. Ovarian torsion treated with untwisting: second look 36 hours after untwisting. J Minim Invasive Gynecol. 2007 May-Jun;14(3):270.](image)

![Figure 4. Ovary 36 hours after untwisting. Reprinted from Harkins G. Ovarian torsion treated with untwisting: second look 36 hours after untwistings. J Minim Invasive Gynecol. 2007 May-Jun;14(3):270.](image)
Committee Opinion

OBSTETRICS & GYNECOLOGY

Many obstetrician-gynecologists cite the fear of leaving behind a potential malignancy as a reason to perform oophorectomy. Although more than one half of cases of pediatric and adolescent adnexal torsion occur in the setting of an adnexal mass, cancer in this age group rarely presents as adnexal torsion (8, 9). The rate of malignancy among premenarchal adolescents with ovarian torsion ranges from 0.4 to 5% (9, 44, 37). Notably, edema of the ovary causes enlargement, and the possibility of a negative laparoscopy, the potential for a two-staged procedure in the event that removal of an underlying cyst is deferred, the need for postprocedure surveillance, and risk of recurrent ovarian torsion. In special circumstances, a discussion on the possibility of an underlying malignancy is warranted.

Surgical Approach
Obstetrician–gynecologists who mainly treat adults are commonly consulted to manage adnexal torsion in an adolescent. Although surgical steps for adolescents may be similar to those taken when treating adult patients, there are technical adaptations and specific challenges when performing gynecologic surgery in adolescents. A conscientious appreciation of the physiologic, anatomic, and surgical characteristics unique to this population is required (39). A minimally invasive approach with laparoscopy is preferred. When performing laparoscopy, two unique characteristics of adolescent patients must be considered. First, the abdominal wall tissue integrity varies because fascial wall tension and strength increases with age through adolescence (40). This translates into a wide range of abdominal wall puncture pressure that should be considered to avoid injury to underlying structures. Second, adolescents are at higher risk of vascular injury involving the aorta, inferior vena cava, or left common iliac vein because the distance from these major vessels to the umbilical entry site is short. These characteristics must be respected when planning and executing laparoscopic entry. Placement of secondary trocars (and laparotomy incisions when needed) requires an appreciation for the attenuated cranial to caudal distance and lateral abdominal and pelvic distances in the adolescent. The smallest possible trocars should be used, and fascial closure should be considered because this patient population is at increased risk of fascial herniation when compared with adults (41). The process of insufflation requires modification because tolerable maximum distention pressure is lower in pediatric and adolescent patients (39, 42). Although specific age or weight cutoffs have not been established, in adolescents weighing 20 kg or greater, starting insufflation pressure of 12 mm Hg and flow rates of 3–6 L/min are generally well tolerated (43). Lower pressure ranges and flow rates are recommended in pediatric and adolescent patients weighing less than 20 kg.

Management of Adnexal Masses
Many obstetrician–gynecologists cite the fear of leaving behind a potential malignancy as a reason to perform oophorectomy. Although more than one half of cases of pediatric and adolescent adnexal torsion occur in the setting of an adnexal mass, cancer in this age group rarely presents as adnexal torsion (8, 9). The rate of malignancy among premenarchal adolescents with ovarian torsion ranges from 0.4 to 5% (9, 44, 37). Notably, edema of the ovary causes enlargement, and the edema itself can be interpreted mistakenly as an ovarian tumor on imaging studies. If a cyst is present at the time of adnexal torsion, it is likely benign. In many cases, the twisted adnexa can be detorsed, and if a cyst is identified, it is reasonable to proceed with a concomitant cystectomy. Occasionally, the twisted adnexa are severely edematous and friable, and in such cases, attempts at cystectomy can result in ovarian tissue damage and bleeding that may lead to oophorectomy. A cystectomy does not need to be performed at the time of detorsion because it may cause additional trauma. If a cystectomy is not performed, a surgeon may consider incision and drainage for large cysts. Ultrasonography to reevaluate the cyst at 6–12 weeks is recommended (8, 33). Simple cysts typically resolve within 6–8 weeks. In pediatric and adolescent patients with persistent cysts, a laparoscopic ovarian cystectomy can be performed given the risk of recurrent torsion. Cysts measuring 5 cm or more after detorsion should be treated in accordance with published clinical practice guidelines (45). Ovulation suppression (eg, with combination oral contraceptive pills or depot medroxyprogesterone acetate) can be initiated to prevent recurrent physiologic cysts (6, 28).

Oophoropexy
Oophoropexy is a surgical procedure that fixes the ovary in position limiting its range of movement. The two strongest indications to perform this procedure are repeat torsion or an absent contralateral ovary (46, 47). The overall recurrence rate of ovarian torsion is low, ranging from 2% to 12%; although, reportedly, the rate is higher in spontaneously torsed normal adnexa (48, 8). Oophoropexy is controversial and current data are insufficient to support performing an oophoropexy to decrease the risk of recurrent ovarian torsion (47, 13, 44).

Pain Management
Pain frequently is undertreated in children and adolescents undergoing surgical procedures (49). Several intraoperative measures can be taken to minimize pain after laparoscopy, such as avoiding excessively high or prolonged intraabdominal pressure, removing all insufflating carbon dioxide at the end of the procedure, and infiltrating all trocar sites with local anesthetic (50). In a systematic review of postoperative pain regimens including acetaminophen, codeine, and hydrocodone, a mild-to-modest benefit was observed with a variety of interventions, with no consensus on a preferred regimen (51). Expert opinion suggests that laparoscopic adnexal detorsion improves an adolescent patient’s pain. Postoperative pain control is achieved with scheduled nonsteroidal antiinflammatory medications in combination with a short course (3 days or less) of opioids.Judicious use of opioids, including tramadol, is advised because adolescents prescribed opioids for as few as 7 days can develop dependence (52). Many children’s hospitals now use dedicated pain service teams for...
evaluation and treatment of pediatric pain (53), and consultation with such services or pediatric specialists is especially helpful for obstetrician–gynecologists unfamiliar with postoperative pediatric pain medication preferences and weight-based dosages.

Postoperative Counseling and Follow-up

Adolescents generally recover well from surgery and resume activity quickly. Weight-based lifting restrictions often are minimal, and most adolescents will self-limit activities because of discomfort. Patients in whom a cyst was noted but not removed at the time of detorsion should be counseled to limit high-impact activities pending interval ultrasonography findings. The postoperative visit is crucial for patient and parent or guardian education and counseling. This discussion should include details of the diagnosis and procedure, prevention and likelihood of recurrence, potential effect on future fertility, and need for additional imaging (13).

Conclusion

The differential diagnosis of an adolescent presenting with abdominal pain should include adnexal torsion. A minimally invasive surgical approach is recommended with detorsion and preservation of the adnexal structures regardless of the appearance of the ovary. Surgeons should not remove a torsed ovary unless oophorectomy is unavoidable, such as when a severely necrotic ovary falls apart.

Continued educational efforts targeted at emergency care providers, general surgeons, pediatric surgeons, and gynecologic surgeons about current treatment recommendations for adnexal torsion in young patients are needed, and collaborative care pathways should be encouraged (54). Adolescents are a unique population with specific needs; thus, special care for placement of ports and lower insufflation pressure may be indicated. Multispecialty collaboration is crucial to optimize care and ensure that minimally invasive detorsion with ovarian preservation is the standard treatment provided to adolescents with adnexal torsion.

References

21. Swenson DW, Lourenco AP, Beaudoin FL, Grand DJ, Killelea AG, McGregor AJ. Ovarian torsion: case–control study comparing the sensitivity and specificity of ultrasonography
and computed tomography for diagnosis in the emergency department. Eur J Radiol 2014;83:733–8.

Published online on July 25, 2019.

Copyright 2019 by the American College of Obstetricians and Gynecologists. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, posted on the internet, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher.

Requests for authorization to make photocopies should be directed to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923; (978) 750-8400.

American College of Obstetricians and Gynecologists
409 12th Street, SW, PO Box 96920, Washington, DC 20090-6920

This information is designed as an educational resource to aid clinicians in providing obstetric and gynecologic care, and use of this information is voluntary. This information should not be considered as inclusive of all proper treatments or methods of care or as a statement of the standard of care. It is not intended to substitute for the independent professional judgment of the treating clinician. Variations in practice may be warranted when, in the reasonable judgment of the treating clinician, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology. The American College of Obstetricians and Gynecologists reviews its publications regularly; however, its publications may not reflect the most recent evidence. Any updates to this document can be found on www.acog.org or by calling the ACOG Resource Center.

While ACOG makes every effort to present accurate and reliable information, this publication is provided “as is” without any warranty of accuracy, reliability, or otherwise, either express or implied. ACOG does not guarantee, warrant, or endorse the products or services of any firm, organization, or person. Neither ACOG nor its officers, directors, members, employees, or agents will be liable for any loss, damage, or claim with respect to any liabilities, including direct, special, indirect, or consequential damages, incurred in connection with this publication or reliance on the information presented.

All ACOG committee members and authors have submitted a conflict of interest disclosure statement related to this published product. Any potential conflicts have been considered and managed in accordance with ACOG’s Conflict of Interest Disclosure Policy. The ACOG policies can be found on acog.org. For products jointly developed with other organizations, conflict of interest disclosures by representatives of the other organizations are addressed by those organizations. The American College of Obstetricians and Gynecologists has neither solicited nor accepted any commercial involvement in the development of the content of this published product.

The content of this publication is the sole responsibility of the authors and does not necessarily reflect the views or policies of the Department of Defense or the departments of the Army, Navy, or Air Force. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.